

Mathematics in Education and Industry

MEI STRUCTURED MATHEMATICS

STATISTICS 1, S1

Practice Paper S1-B

Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF12)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is **72**.

Section A (36 marks)

1 In a certain region of the country the percentages of blood donors in each of four different blood groups are as follows.

Group	0	А	В	AB
Percentage	45%	43%	9%	3%

(i) Two of the region's donors are chosen at random. Find the probability that

(A) at least one has blood grou	р O,
---------------------------------	------

- (*B*) both have the same blood group.
- (ii) Show that at least 8 donors would have to be chosen, at random, to be 99% sure of finding at least one donor of blood type O.

[2]

[3]

[4]

2 A company which hires out equipment by the day has three mowers. The number, *X*, of mowers which are hired on any one day has the following probability distribution.

$$P(X=r) = k \left(\frac{1}{2}\right)^r$$
 for $r = 0, 1, 2$ and 3.

- (i) Show that $k = \frac{8}{15}$. [2]
- (ii) Sketch the probability distribution of X. [2]
- (iii) Calculate the expectation and variance of X.
- 3 Next September I intend to buy a new car. Its registration plate will be of the form

HW 55 MSD

where HW is the local area code for the Isle of Wight, 55 represents the second half of the year 2005, and the last three letters are chosen at random.

Both parts of the question refer to the last three letters of the registration plate. You may assume that each of the 26 letters in the alphabet, of which 5 are vowels and 21 are consonants, is available for each of the random choices.

- (i) Find the probability that the random letters on the plate are MSD, appearing in that order. [2]
- (ii) Find the probability that the letters are M, S, D in any order. [2]

- 4 New-born babies are tested for a mild illness which affects 1 in 500 babies. The result of a test is either positive or negative. A positive result suggests that the baby has the illness. However, the test is not perfect.
 - For babies with the illness, the probability of a positive result is 0.99
 - For babies without the illness, the probability of a negative result is 0.95

A new-born baby is chosen at random and tested for the illness.

(i) Copy and complete this probability tree diagram to illustrate the situation. [2]

- (ii) Find the probability that the result is positive.
- (iii) Given that the result of a test is positive, show that the conditional probability that the baby has the illness is 0.038 (correct to 3 decimal places). [3]

[3]

[1]

5 The magazine *Nearly Eighteen* has a web site, on which it recently ran a pop trivia quiz with ten questions. The results of the first 1000 entries were analysed. Summary statistics for the numbers of questions answered correctly, *x*, and associated frequencies, *f*, are as follows:

$$n = 1000$$
 $\Sigma x f = 6100$ $\Sigma x^2 f = 42260$

- (i) Show that the mean score is 6.1.
- (ii) Calculate the mean square deviation and the variance, s^2 , of the data. Comment on the relative size of the two answers. [3]

Each question in the quiz was in fact of the multiple choice variety, with four possible answers. Three points are awarded for a question answered correctly and one point is deducted for a question which is not answered correctly.

- (iii) Show that, if x questions are answered correctly, the number of points, y, is given by y = 4x 10. [1]
- (iv) Hence find the mean and variance of the points scored. [3]

Section B (36 marks)

	Percentage of original value (x)	Number of cars	
	$15 \le x < 20$	4	
	$20 \le x < 25$	12	
	$25 \le x < 30$	18	
	$30 \le x < 35$	13	
	$35 \le x < 40$	6	
	$40 \le x < 45$	5	
	$45 \le x < 55$	2	
(i) Draw a h	istogram on graph paper to ill	ustrate the data.	[4]
(ii) Carefully	describe the shape of the dist	ribution.	[2]
(iii) Calculate	an estimate of the median of	the data.	[2]
(iv) Use your giving yo	calculator to find estimates or our answers correct to 2 decim	f the mean and standard devia al places.	tion of the data, [4]
(v) Hence id	entify any outliers, explaining	your method.	[4]
A similar surv standard devia	ey of 60 five-year old diesel-cation of 11.7%.	driven cars produced a mean o	of 34.2% and a
(vi) Use the	se statistics to compare the val	lues of petrol and diesel cars	five years after they

6 A motoring magazine carried out a survey of the value of 60 petrol-driven cars that were five years old. In the survey, the value of each car was expressed as a percentage of its value when new. The results of the survey are summarised in the following table.

(vi) Use these statistics to compare the values of petrol and diesel cars, five years after they were purchased as new.

7 A motoring organisation reports that the proportion of drivers who would fail a basic sight test is 1 in 6.

For parts (i) to (iii) you may assume that the report is correct.

- (i) Write down the value of *p*, the probability that a driver chosen at random would **pass** the sight test. [1]
- (ii) A random sample of 30 drivers is taken.
 - (A) How many would be expected to pass the test ?
 - (B) Find the probability that exactly this number pass the test. [4]
- (iii) A random sample of *n* drivers is taken.
 - (A) Find the probability that all pass the sight test when n = 13.
 - (B) Find the smallest value of n such that the probability of all drivers passing is less than 5%. [4]

A journalist wishes to test the accuracy of the motoring organisation's report by checking the sight of a random sample of 15 drivers.

- (iv) Write down suitable hypotheses for this test in terms of p. [2]
- (v) Find the critical region for the test at the 10% significance level and illustrate it on a number line.
- (vi) Find the minimum sample size for which the upper tail of the critical region would not be empty.

Qu		Answer	Mark	Comment		
Section A						
1	(i)	(A) P(at least one has blood group O) = $1 - 0.55^2 = 0.698$ (to 3 s.f.)	M1 A1 2	For calculation		
		(B) P(both have same blood group) = $0.45^2 + 0.43^2 + 0.09^2 + 0.03^2$ = 0.396 (to 3 s f)	M1 M1 A1	For at least 2 squares For sum of 4 squares		
		$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{P_{ij}(x_{j}) + P_{ij}(x_{j})}{P_{ij}(x_{j})} = \sum_{i=1}^{n} \frac{P_{ij}(x_{j}) + P_{ij}(x_{j})}{P_{ij}(x_{j})} = \sum_{i=1}^{n} \frac{P_{ij}(x_{j}) + P_{ij}(x_{j})}{P_{ij}(x_{j})} = \sum_{i=1}^{n} \frac{P_{ij}(x_{j})}{P_{ij}(x_{j})} = \sum_{i=1$	3			
	(ii)	For $n = 7$, P(at least one has blood group O) = $1 - 0.55^7 = 0.985$ (to 3 s.f.) < 99%	IVI I	evaluation & comparison		
		For $n = 8$, P(at least one has blood group O)	A1	Both evaluations correct		
		$= 1 - 0.55^8 = 0.992$ (to 3 s.f.) > 99%	E1	Comparisons		
			3			
2	(i)	r 0 1 2 3				
	(-)					
		$P(X=r) \qquad k \qquad \frac{1}{2}k \qquad \frac{1}{4}k \qquad \frac{1}{8}k$				
			N/1			
		$k\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right) = 1 \implies \frac{15}{8}k = 1 \implies k = \frac{8}{15}$	MI	For forming equation		
			A1	For solution with		
		0	Z	Iractions		
	(ii)					
			G1	For lines in proportion		
			G1	(dependent)		
		0 1 2 3 ^r	2	For scaled axes		
			-			
	(111)	$E(X) = \sum r P(X = r)$ = 0 x $\frac{8}{15}$ + 1 x $\frac{4}{15}$ + 2 x $\frac{2}{15}$ + 3 x $\frac{1}{15}$ = $\frac{11}{15}$	MI A1	For $E(X)$		
		$V_{0,r}(Y) = E(Y^2) - E(Y)^2$	M1	For $F(Y^2)$		
		Var(A) - E(A) - [E(A)]	1011	FOI E(X)		
		$= 0 \times \frac{6}{15} + 1 \times \frac{4}{15} + 4 \times \frac{2}{15} + 9 \times \frac{1}{15} - (\frac{11}{15})$	AI			
		$=\frac{194}{225}$ = 0.862 (to 3 s.f.)	4			
3	(i)	P(letters on plate are MSD, in that order)		$(1)^{3}$		
		$(1)^3$ 1 0 000057 (1.2.6)	M1	For $\left(\frac{1}{26}\right)$		
		$=\left(\frac{1}{26}\right) = \frac{1}{17576} = 0.000057 \text{ (to 2 s.f.)}$	Al 2	(20)		
			2			
	(ii)	P(letters on plate are M, S, D in any order)	M1	For " $3! \times$ their part (i)"		
		$= 3! \times \left(\frac{1}{26}\right)^3 = \frac{6}{17576} = \frac{3}{8788} = 0.00034 \text{ (to 2 s.f.)}$	A1 2			

4	(i)	Tree diagram:		
		Has the 0.99 Positive result		
		0.002 illness		
		0.01 Negative result	B1	For 3 correct probabilities
		0.05 Positive result	B1	For 2 further correct probabilities
		0.998 have the illness 0.95 Negative result	2	
	(ii)	P(result is positive) = $0.002 \times 0.99 + 0.998 \times 0.05$ = $0.05188 = 0.052$ (to 2 s.f.)	M1 M1 A1	For one product For sum of 2 products
	(;;;)	P(baby has the illness positive test result)	M1	M1 for numerator
	(111)	$= \frac{P(baby has the illness and test result positive)}{P(test result positive)}$	M1	M1 for quotient with their part (ii)
		$= \frac{0.002 \times 0.99}{0.05188} = 0.038 $ (3 d.p.)	A1 3	
5	(i)	Mean = $\frac{6100}{1000}$ = 6.1	B1 1	For mean
	(ii)	$msd = \frac{42260 - 1000 \times 6.1^2}{1000} = \frac{5050}{1000} = 5.05$	M1	For S_{xx}
		$42260 - 1000 \times 6.1^2 - 5050 = 5.055$	A1	For both values
		They are almost the same due to large <i>n</i> . -5.055	E1 3	For reference to <i>n</i>
	(iii)	Number of points = $3x - (10 - x) = 4x - 10$	B1 1	For " $3x - (10 - x)$ "
	(iv)	$\overline{y} = 4\overline{x} - 10 = 4 \times 6.1 - 10 = 14.4$	M1 A1	For \overline{y}
		variance(y) = $16 \times variance(x)$	R 1	
		$= 16 \times 5.055 = 80.9$ (to 3 s.f.)	3	variance (x) "

Total = 36

Qu		Answer	Mark	Comment		
Sect	Section B					
6	6)					
Ū	(1)	Histogram : percentage values for petrol cars	G1	For linear scaled axes		
			G1	For frequency density or equivalent or key		
			G1	For heights of first 6 bars (joined); all correctly positioned		
		0 111111111	G1	For size of 7 th bar		
		percentage value				
			4			
		Shape of distribution: It has positive skew.	B1	For skew		
	(11)		B1	For <i>positive</i>		
			2			
	(iii)	Find median by simple interpolation	M1	For identifying interval		
	()	$= 25 + \frac{14.5}{5} \times 5 = 29$ or $25 + \frac{14}{5} \times 5 = 289$		containing median		
		18 18 18 18	A1	For precise value		
			2			
	(iv)	Mid-interval points: 17.5, 22.5, 27.5, 32.5, 37.5, 42.5, 50	B1	For mid-interval points		
		1795	B1	For mean		
		Mean = $\frac{1755}{60}$ = 29.92 (to 2 d.p.)	2.61			
			MI A 1	For variance		
		s.d. = $\sqrt{\frac{57112.5 - 60 \times 29.92^2}{59}}$ = 7.60 (to 2 d.p.)	A1 4	it their mean		
	(v)	Mean -2 s.d. $= 29.92 - 2 \times 7.60 = 14.71$ (to 2 d.p.)	M1	For attempt at $\overline{x} \pm 2sd$		
	(*)	Mean + 2 s.d. = $29.92 + 2 \times 7.60 = 45.13$ (to 2 d.p.)	A1	For both values		
		Hence the 2 percentages in range 45 to 55 could be outliers, since they may lie more than 2 s.d. from the	M1	For "2 outliers"		
		mean	A1	or equivalent		
			4			
	(vi)	On average cars with diesel engines held their value better than cars with petrol engines.	E1	or equivalent		
		Greater variation in the percentage values for cars with diesel engines compared to cars with petrol engines.	E1 2	or equivalent		

7	(i)	$p = \frac{5}{6}$	B1 1	For probability
	(ii)(A)	Expected number to pass = $30 \times \frac{5}{6} = 25$	B1	For expected number
			M1 2	For $(5/6)^r \times (1/6)^{30-r}$
			_	
	(ii)(B)	P(exactly 25 pass) = ${}^{30}C_{25} \times \left(\frac{5}{6}\right)^{25} \times \left(\frac{1}{6}\right)^{5}$	M1	
			A1	
		= 0.192 (to 3 s.f.) = 0.19 (to 2 s.f.) P(all pass sight test)	2 M1	For use of tables or
	(iii)(A)	= 1 - 0.9065 = 0.0935 [using tables]	1011	working out
		$or = \left(\frac{5}{2}\right)^{13} = 0.0935 \text{ (to 3 s f)}$	A1	
		(6) (6) (6) (6) (6) (6) (6) (6) (6) (6)	2	
	(iii)(B)	Searching for appropriate <i>n</i> :	M1	For attempt at search
		for $n = 16$: P(all pass) - 1 0 9459 [tables] or $(5)^{16} = 0.0541$		
		$= 1 - 0.9439 [nubles] or (\frac{1}{16}) = 0.0541$ for $n = 17$. P(all pass)		
		$= 1 - 0.9549 \ [tables] \ or \ \left(\frac{5}{16}\right)^{17} = 0.0451$	A1 2	
		hence smallest sample size is where $n = 17$	D 1.1	
	(iv)	H ₀ : $p = \frac{5}{6}$; H ₁ : $p \neq \frac{5}{6}$	B1,1 2	For hypotheses
	(v)	Using binomial tables for $n = 15$:	M1	For at least one comparison
		$P(X \le 9) = 0.0274 < 0.05,$ but $P(X \le 10) = 0.0898 > 0.05$	A1	companison
		So lower tail of crit. reg. is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}	M1	For comparison
		$P(X \ge 15) = 1 - P(X < 14) = 1 - 0.9351$	A1	
		= 0.0649 > 0.05, So upper tail of crit. reg. is empty.		
		Critical region Acceptance region	G1	For diagram
			5	e
		0 9 10 15		
	(vi)	From part (iv), for $n = 16$: P(all pass) = $0.0541 > 5\%$, and for $n = 17$ · P(all pass) = $0.0451 < 5\%$	M1	For comparisons
		Hence minimum sample size for which upper tail is not empty is 17.	AI 2	

Total = 36